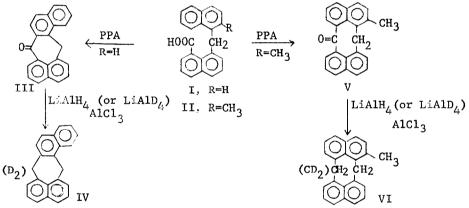

RESTRICTED CONFORMATIONAL INVERSION IN 1,8-(1',8'-NAPHTHYLDIMETHYL)NAPHTHALENE


P.T. Lansbury* and M. Klein Department of Chemistry State University of New York at Buffalo Buffalo, New York 14214, U.S.A. (Received in USA 8 January 1968)

As part of our continuing studies of 7,12-dihydropleiadene chemistry¹, we have studied ring inversion in the 1,8-(1',8'-naphthyldimethyl)naphthalene system (C). It has already been amply demonstrated¹ that simple 7,12-dihydropleiadenes (B) have substantially higher ΔF^* inversion (~13-16 kcal/mole) than similarly substituted 9,10-dihydroanthracenes (A) which flip too rapidly, on the n.m.r. time scale, for determination of the inversion barrier² separating the folded conformers. Examination of models reveals that structure B will suffer greater bond angle strain during inversion than A and that the corresponding strain in the flattened transition state for the highly folded eight-membered analog (C) will be even greater (see arrows below).

The angle strain contribution to raising ΔF_* inversion was also noted by Agosta³, who succeeded in preparing optically active 4-nitro-1,8-(1',8'-naphthaly1)naphthalene and found its conformational stability such that * Alfred P. Sloan Foundation Fellow, 1963-67. $\Delta F_{293}^{\dagger} = 22.9$ kcal/mole, corresponding to $t_{1/2} \sim 102$ minutes at 25.5°. We now report on a methyl 1,3-(1',3'-naphthyldimethyl)naphthalene whose inversion barrier is at least 10 kcal/mole higher than the related 1-methyl-7,12-dihydropleiadene.⁴

The 8-aroyl-1-naphthoic acid (mp 242-3° $\lambda_{>C=0}$ 5.94, 6.06 µ) obtained from the Grignard reagent derived from 2-methyl-1-bromo-naphthalene and 1,8-naphthalic anhydride⁵ was converted to methylene acid II (mp 155-160°, $\lambda_{>C=0}$ 5.95 µ (nujol)) by Huang-Minlon reduction.⁵ Polyphosphoric acid cyclization⁵ of II afforded v⁶ (m.p. 238-239°, $\lambda_{>C=0}$ 6.04 µ) in low yield, which gave 2-methyl-1,8-(1',8'-naphthyldimethyl)naphthalene⁶ (VI), mp 202-4°, upon mixed hydride reduction.⁵ These transformations are summarized below together with the alternative results obtained when seeking the <u>des</u>methyl compound⁷ (from I)

The inversion barrier for IV-12,12-d₂ (deuterated to avoid two overlapping AB spectra from the C₇- and C₁₂- methylene groups⁸), was determined by variable temperature n.m.r. spectroscopy⁵ at the coalescence temperature (T_c = +1 ± 1°C) from the expression⁹ k_r = $\pi \sqrt{\Delta v_{AB}^2 + 6J_{AB}^2} / \sqrt{2}$ and the Eyring equation. In the absence of exchange, the C₇-methylene protons appeared as a quartet with $\Delta v_{AB}^2 = 20.0 \text{ H}_z$ and J_{AB} = 15.0 Hz from which ΔF_{Tc}^{*} was calculated to be 13.5 kcal/mole, a value comparable to other 7,12-dihydropleiadenes.^{1,5} The eight-membered rings in V and VI clearly invert much more slowly, since their benzylic methylene signals appeared as AB spectra up to 200°C, with no sign of impending coalescence. From $\Delta \Psi_{AB}$ and J_{AB} for V and dideuterated VI, <u>minimum</u> values of ΔF^{*} inversion can be calculated⁹ and these are tabulated below, along with data for the related dihydropleiadenes.

TABLE	Ι
-------	---

Compound	δ_{AB}	$\frac{\Delta \gamma_{AB}}{\Delta B}$	J _{AB}	T _c (°C)	∆F [*] inv(kcal/mole)
1-methy1-7,12-dihydropleiadene-7,7-d ₂	265	19	15	-10°	13.1 ^a
1-methy1-7,12-dihydropleiadene-12,12-d2	265	73	15	8°	13.5 ^a
1-methy1-7(12H)-pleiadenone				<-60°	<10.4 ^b
V	284	17	15	>200°	>23.8 ^c
VI-d ₂	306	80	15	>200	>23.2 ^c

^a F.D. Saeva, Ph.D. Dissertation, State University of New York at Buffalo,1967 ^b estimated, using $\Delta \gamma$ = 19 Hz and J = 15 Hz, and Tc = -60°C. ^c estimated, using T_c = 200°C.

Thus, like Agosta's diketone³, V and VI should have high optical stability when resolved. The greater barrier height in V and VI compared with Agosta's compound³ ($\Delta F_{rac}^* \simeq 21$ kcal/mole at 200°C), may be a consequence of groundstate electrostatic repulsion of parallel carbonyl dipoles in the diketone, an influence not present in our compounds. It must also be remembered, however, that the buttressing methyl group in V and VI may raise the barrier to an extent not observed with methyl dihydropleiadenes.¹¹

<u>Acknowledgement:</u> We are grateful to the National Science Foundation for generous support of this work.

REFERENCES:

- 1. P.T. Lansbury, Trans. N.Y. Academy Sci., <u>29</u>, 357(1967) and references cited therein.
- 2. (a) W.B. Smith and B.A. Shoulders, J. Phys. Chem., <u>69</u>, 2022(1965)
 - (b) D.Y. Curtin, C.G. Carlson and C.G. McCarty, Can. J. Chem., <u>42</u>, 565 (1964).
- 3. W.C. Agosta, J. Am. Chem. Soc., <u>89</u>, 3926 (1967).
- 4. P.T. Lansbury and F.D. Saeva, Tetrahedron Letters, 599(1966).
- 5. For typical experimental procedures, see P.T. Lansbury, J.F. Bieron and M. Klein, J. Am. Chem. Soc., 88, 1477(1966) and ref. 7.
- Satisfactory elemental analyses and consistent spectral data were obtained for this compound.
- 7. The synthesis of 7,12-dihydro-8,9-benzopleiadene(IV) was independently carried out by Houlton and Kemp (J. Chem. Soc. <u>C</u>, 591(1967)), whose results are entirely consistent with ours. These findings, of course, provide further substantion for the structures assigned to V and VI.
- 8. No observable steric deuterium isotope effect on the inversion rate is expected (cf. ref. 5).
- 9. R.J. Kurland, M.B. Rubin and W.B. Wise, J. Chem. Phys., <u>40</u>, 2426(1964)
- 10. All n.m.r. spectra were measured at 60 mHz using A-60 or HA-60 spectrometers, in chloroform-d solutions. Temperature readings were calibrated by using methanol or ethylene glycol.
- 11. Methyl groups at C₁ and/or C₆ in DHPs produce no effect on ΔF_{inv}^* , whereas C₈ and C₁₁- methyl raise the barrier ca. 1 kcal/mole per methyl(ref. 5).